High Pressure First Stage Regulators LV4403SR and TR Series

Application

Provides accurate first stage regulation in two-stage bulk tank systems. Reduce tank pressure to an intermediate pressure of 5 to 10 PSIG. Also used to supply high pressure burners for applications like industrial furnaces or boilers. Also incorporated in multiple cylinder installations.

Features

- Incorporate integral relief valves for added system protection.
- Large vent helps prevent blockage and has 3/4" F.NPT thread for vent piping.
- Bonnet vent positioned over outlet to avoid icing and contamination by foreign material.
- Unique bonnet vent profile designed to minimize vent freeze over when properly installed.
- Replaceable valve orifice and valve seat disc.
- Straight-line valve closure reduces wear on seat disc.
- Large molded diaphragm is extra sensitive to pressure changes.
- Built in pressure tap has plugged 1/6" F.NPT outlet.
- Plug can be removed with a 3/16" hex allen wrench.
- Extra long lever arm provides uniform delivery pressure.
- Brilliant red finish.

Materials

Body	Die Cast Zinc
Bonnet	Die Cast Zinc
Nozzle Orifice	Brass
Spring	Steel
Valve Seat Disc	Resilient Rubber
Diaphragm	Integrated Fabric and Synthetic Rubber

Ordering information								
Part Number	Inlet Connection	Outlet Connection	Orifice Size	Factory Delivery Pressure	Adjustment Range* (PSIG)	Integral Relief Included	Vapor Capacity BTU/hr Propane**	
LV4403SR4	1/" F NDT			5	1-5			
LV4403TR4	½" F. NPT	1/" E NDT		10	5-10			
LV4403SR9	F. POL	½" F. NPT	1/2	5	1-5		0.500.000	
LV4403TR9			1/4"	10	5-10	Yes	2,500,000	
LV4403SR96		F. POL 3/4" F.NPT		5	1-5			
LV4403TR96				10	5-10			

^{*} When used for final stage pressure control, must either incorporate integral relief valve or separate relief valve should be specified in accordance with NFPA Pamphlet 58

LV44030IX	
150 PSIG Inlet	
ωInitial Settig	
7	
8 0 6	
14 S S S	
7 6 6 7 100 PSIG Inlet 50 PSIG Inlet 50 PSIG Inlet 55 PSIG	
≥ 3 10 PSIG Inlet 25 PSIG Inlet	
CFH/hr 100 200 300 400 500 600 700 800 900 BTU/hr 500,000 1,000,000 1,500,000 2,000,000 2	1000 2,500,000

LV4403	TR										
40								15	0 PSIG	Inlet	
0 12			Init	ial Sett	ing				5 PSIG		
) 11 S			/					/ _/ -10	0 PSIC	Inlet	
Delivery Pressure PSIG 2 8 6 01											
주 8 주 8 8											
6 2							/			+	
<u>`</u>					15 PS	IG Inle	t l	50 PS	G Inlet	7/	
								25 PS	ig inlet	_	
CFH/hr BTU/hr	100		000	00 40	00 50 0.000		0.000				
DIU/III		500	,000	1,000	0,000	1,500),000	2,00	0,000	2,500	,000

^{**} Maximum flow based on inlet pressure 20 PSIG higher than the regulator setting and delivery pressure 20% lower than the setting.